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What is the difference between machine learning and statistical 
modeling?

“The short answer is: None. They are both concerned with the 
same question: how do we learn from data?” 

– Dr. Larry Wasserman, Professor of Statistics and Data 
Science in the Department of Statistics and Data Science and 
in the Machine Learning Department at Carnegie Melon

https://normaldeviate.wordpress.com/2012/06/12/statistics-versus-machine-learning-5-2/

https://normaldeviate.wordpress.com/2012/06/12/statistics-versus-machine-learning-5-2/


Outline
1.  Background: Methods for Learning from Data

unsupervised, semi-supervised, supervised

2. To Explain or to Predict?
What is the question?

3. Principles of Risk Prediction
Best practices

4. Methodology 
Statistical Modeling to Machine Learning to Artificial Intelligence 
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Methods for Learning from Data: 
Supervised Methods
• Labeled outcomes or classes

• Focus may be on best prediction algorithm, on which variables 
(features) are most closely associated with outcome, or on 
assessing whether outcomes differ between exposure groups

Predicting who is likely to achieve remission among patients with rheumatoid arthritis starting 
tocilizumab monotherapy

Predicting who is likely to need total joint replacement among patients with osteoarthritis

Assessing associations between environmental exposures and care fragmentation 

• Example methods: linear regression, logistic regression, random 
forest, support vector machines



Methods for Learning from Data: 
Unsupervised Methods
• No labels/annotations

• Goal is to uncover hidden structure/patterns in the dataset
Assessing medication adherences trend over time in patients with Systemic 
Lupus Erythematosus

Investigating osteoarthritis endotypes through clustering of biochemical 
marker data

Describing patterns of pain sensitization among patients with knee 
osteoarthritis 

• Data reduction: principal component analysis, factor 
analysis

• Clustering: model-based cluster analysis, K-means



Methods for Learning from Data: 
Semi-supervised Methods
• Combination of Supervised and Unsupervised approaches

• Outcomes/classes are labeled for some part of the dataset

• Analysis usually done in steps with supervised followed by 
unsupervised or vice versa

• Examples: often used in natural language processing
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What is the 
Question?



Supervised Methods
To explain, or to predict? 

TO EXPLAIN

● We use a mathematical model to 
formalize the relationship between 
variables.

● We focus on obtaining unbiased 
estimates of the associations 
between our independent and 
dependent variables.

● Goal may be causal inference: does 
our predictor have a causal effect on 
outcome? 

TO PREDICT

● We use a mathematical model to 

make predictions about the 

dependent variable.

● We focus on obtaining the optimal 

prediction based on a combination 

of available variables. 

● Goal may be to reliability predict 

outcomes for individuals.

Shmueli G. To explain or to predict?. Statistical science. 2010.

https://statisticalhorizons.com/prediction-vs-causation-in-regression-analysis



Example: To Explain

Objective: To examine the association of long-term weight 

change with RA risk in a large prospective cohort study. 



Example: To Explain

Exposure: weight gain Outcome: RA

Confounder: physical 
activity

“An analysis of weight change and RA risk in prospective cohort studies may be 

limited by time-varying confounders, which may themselves be affected by previous 

weight change, that lie on the causal pathway between weight change and RA.”



Example: To Explain

Marchand NE, et al. "Long-term Weight Changes and Risk of Rheumatoid Arthritis Among Women in a Prospective Cohort: A Marginal 

Structural Model Approach." Rheumatology (2020).



● Using an MSM approach in our analyses allowed us to deal 
with the time-varying confounding. In addition, by 
conducting our analyses in the ‘pseudo-population’ we were 
able to statistically approximate the study conditions of a 
randomized controlled trial (RCT) in which we could specify 
hypothetical weight-change interventions of interest.

Marchand NE, et al. "Long-term Weight Changes and Risk of Rheumatoid Arthritis Among Women in a Prospective Cohort: A Marginal 

Structural Model Approach." Rheumatology (2020).

Example: To Explain



Example: To Predict

Objective: To assess the feasibility of building a model to estimate the 

individual flare probability in RA patients tapering bDMARDs.



Example: To Predict

• Used data from the REduction of Therapy in patients with rheumatoid 

arthritis in ongoing remission (RETRO) study. 135 visits from 41 

patients

• Outcome: a binary indicator of whether a patient suffered a flare 

within 14 weeks after a given visit. 31 total flares.

• Predictors: patient characteristics, disease characteristics, medication 

data, laboratory data (n > 30)

• Analytic approach: ensemble machine learning model



Example: To Predict

Vodencarevic A, et al. “Advanced machine learning for predicting individual risk of flares in rheumatoid arthritis patients tapering biologic drugs.” 

Arthritis research & therapy (2021).



Principles of Risk 
Prediction



Jamshidi A, et al. Machine-

learning-based patient-specific 

prediction models for knee 

osteoarthritis. Nat Rev 

Rheumatol  (2019).

Principles of 
Risk Prediction



Training, 
testing, and 
validation

Principles of 
Risk Prediction

Jamshidi A, et al. Machine-

learning-based patient-specific 

prediction models for knee 

osteoarthritis. Nat Rev 

Rheumatol  (2019).



Principles of Risk Prediction
Input Data: Training and Testing

● The model should generalize to populations that were 

not included in the derivation sample. Overfitting is when 

the model captures random variation in the data. 

● If number of predictors is greater than the number of 

observations, we can get perfect prediction (p > n).

● Model fits well in the dataset used to create the model, 

but how will it perform on “new” data? 



Principles of Risk Prediction
Input Data: Training and Testing

● Training and testing datasets: hold out part of sample when 

model building

● Cross validation: Partition data into subsets, and hold out one 

subset for testing. Repeat until all subsets have been hold out and 

average over all subsets.

● Resampling procedures (e.g., bootstrap): resample (with 

replacement) from original dataset to compute optimism adjusted 

measures of predictive performance.

● External validation: test predictions in new dataset.



Principles of Risk Prediction
Input Data: Training and Testing

Vodencarevic A, et al. “Advanced machine learning for predicting individual risk of flares in rheumatoid arthritis patients tapering biologic drugs.” 

Arthritis research & therapy (2021).



Principles of Risk Prediction
Bias-Variance Tradeoff

Bias
how close is our 
model to the true 
underlying model? 

Variance
how do our 
predictions do on a 
new dataset?



Supervised Learning 
Algorithms



Supervised Learning Algorithms
Logistic Regression

● Parametric regression model
● Parametric: assume a form for the model

●  log(Odds of Outcome) = β0 + β1*covariate
● Log odds of outcome (logit) is a linear function of covariates 

● The odds ratio quantifies association between predictor and outcome

● C-Statistic/AUC (Area under the ROC Curve) is a measure of model 

discrimination
● 0.5 = coin flip, 1 = perfect prediction



Supervised Learning Algorithms
Logistic Regression

● Among patients with knee osteoarthritis, is age 
associated with total knee replacement? 

● log(Odds of Outcome) = β0 + 

β1*covariate

● log(Odds of TKR) = β0 + β1*age

● Recall: odds = p / (1-p)

Log (odds) probability

-3.5 3%

-1.5 18%

0 50%



Supervised Learning Algorithms
Logistic Regression

● Among patients with knee osteoarthritis, is age 
associated with total knee replacement? 

● log(Odds of Outcome) = β0 + 

β1*covariate

● log(Odds of TKR) = β0 + β1*age

● log(Odds of TKR) = -2.7 + 0.015*age

● OR=1.015

Ƹ𝑝=12.5% Ƹ𝑝=16.1%



Supervised Learning Algorithms
Logistic Regression

● Among patients with knee osteoarthritis, is age 
associated with total knee replacement? 

● log(Odds of Outcome) = β0 + 

β1*covariate + β2*covariate 

● log(Odds of TKR) = β0 + β1*age + 

β2*age2 

● log(Odds of TKR) = -10.5 + 0.26*age 

– 0.002*age2

Ƹ𝑝=10.6%

Ƹ𝑝=16.8%



Supervised Learning Algorithms
Logistic Regression

● Among patients with knee osteoarthritis, is age 
associated with total knee replacement? 

● log(Odds of Outcome) = β0 + 

β1*covariate + β2*covariate + 

β3*covariate + ….



Principles of Risk Prediction
Bias-Variance Tradeoff

Bias
how close is our 
model to the true 
underlying model? 

Variance
how do our 
predictions do on a 
new dataset?



Supervised Learning Algorithms
Parametric Models
• Parametric: assume a form for the model

• A regression equation describes the association between each 
parameter and the outcome
• Y = intercept + beta*covariate

• Log(odds of Y) = intercept + beta*covariate



Supervised Learning Algorithms
Parametric Models
•Additional terms can be added to 
capture non-linear associations 
(splines, polynomials) or 
interactions between variables
• Stratify by sex; Model association 

separately for age < 65 vs. age 65+ 

• With a large number of predictors it 
would be impossible to try all 
possible combinations, including 
interactions and non-linear 
associations

m

f



Supervised Learning Algorithms
CART

● Classification and Regression Trees 
(CART): Recursive partitioning: the data 
are partitioned into subsets – there is no 
regression equation (non-parametric)

Explicitly models interactions between 
variables (effect of variable b depends on 
level of variable a)

Results are intuitive and clinically 
interpretable – clear rules

● Example: Price et al. attempted to predict 
development of accelerated knee 
osteoarthritis from imaging data

Price LL et al. "Role of Magnetic Resonance Imaging in Classifying Individuals Who Will Develop Accelerated Radiographic Knee Osteoarthritis." 2019.



Supervised Learning Algorithms
CART

Concerns/criticisms: 

● Greedy approach can lead to 
over-fitting 

● Highly dependent on input data 
→ small changes to input data 
can lead to different trees 

● ↑variance – tends to overfit

Price LL et al. "Role of Magnetic Resonance Imaging in Classifying Individuals Who Will Develop Accelerated Radiographic Knee Osteoarthritis." 2019.



Supervised Learning Algorithms 
Ensemble Methods

● Combine information from multiple models to 
improve model performance
● Develop many prediction models
● Combine to form a composite predictor

● Bagging (Bootstrap Aggregation): 
● Draw a bootstrap sample from the data 

(i.e., with replacement)
● Fit a model to this sample
● Get a prediction
● Repeat
● Average predicted values across all 

bootstrapped samples. 

https://towardsdatascience.com/ensemble-methods-in-machine-learning-what-are-they-and-why-use-them-68ec3f9fef5f



Supervised Learning Algorithms
Random Forest

● Tree-based approach (like CART) 

● Draw a random sample of subjects 
and a random sample of predictors 
and then create decision tree

● Average across trees

● Pros: improved prediction, more 
stable than CART

● Cons: interpretability – No clear 
measure to assess the association 
between predictors and outcome 
(e.g., OR), no final tree

https://tex.stackexchange.com/questions/503883/illustrating-the-random-forest-algorithm-in-tikz



Supervised Learning Algorithms
Super Learner

https://blog.jaysinha.me/train-your-first-super-learner-ensemble-model-for-classification/



Supervised Learning Algorithms 
From ML to AI

Wheels Doors Motor Steering 

wheel

Headlights Outcome: 

car

4 4 Yes Yes Yes Yes

2 0 Yes No Yes No

4 2 No No No No

https://dltlabs.medium.com/understanding-machine-learning-deep-learning-f5aa95264d61



Supervised Learning Algorithms 
From ML to AI

https://dltlabs.medium.com/understanding-machine-learning-deep-learning-f5aa95264d61



Supervised Learning Algorithms 
From ML to AI

Panda Jacques



Learning Algorithms: Deep Learning
Simple Neural Net
 input layer (features or predictors)

  output layer (outcome)

  use a simple linear map from input to output

Simon & Shojaie. Supervised Learning: Neural Networks and Deep Learning. Summer Institute in Statistics for Big Data. 

University of Washington. 2021



Learning Algorithms: Deep Learning
Neural Net with 1 Hidden Layer

Simon & Shojaie. Supervised Learning: Neural Networks and Deep Learning. Summer Institute in Statistics for Big Data. 

University of Washington. 2021

Z2=S1(x1b12 + x2b22)

Z1=S1(x1b11 + x2b21)



Learning Algorithms: Deep Learning
Neural Net with Many Hidden Layers

https://www.ibm.com/cloud/learn/neural-networks



Machine Learning and MI
Reviewer Resources



Machine Learning and MI
Reviewer Resources



Machine Learning and MI
Reviewer Resources
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Thank You! 
Jamie E. Collins, PhD
Orthopaedic and Arthritis Center for 

Outcomes Research, BWH
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JCollins13@bwh.harvard.edu
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