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What is the difference between machine learning and statistical
modeling?

“The short answer is: None. They are both concerned with the
same question: how do we learn from data?”

— Dr. Larry Wasserman, Professor of Statistics and Data
Science In the Department of Statistics and Data Science and
In the Machine Learning Department at Carnegie Melon



https://normaldeviate.wordpress.com/2012/06/12/statistics-versus-machine-learning-5-2/

Outline

1. Background: Methods for Learning from Data
unsupervised, semi-supervised, supervised

2. To Explain or to Predict?
What is the question?

3. Principles of Risk Prediction
Best practices

4. Methodology
Statistical Modeling to Machine Learning to Artificial Intelligence
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Methods for Learning from Data:
Supervised Methods

* Labeled outcomes or classes

* Focus may be on best prediction algorithm, on which variables
(features) are most closely associated with outcome, or on
assessing whether outcomes differ between exposure groups

Predicting who is likely to achieve remission among patients with rheumatoid arthritis starting
tocilizumab monotherapy

Predicting who is likely to need total joint replacement among patients with osteoarthritis

Assessing associations between environmental exposures and care fragmentation

* Example methods: linear regression, logistic regression, random
forest, support vector machines




Methods for Learning from Data:
Unsupervised Methods

* No labels/annotations

» Goal Is to uncover hidden structure/patterns in the dataset

Assessing medication adherences trend over time in patients with Systemic
Lupus Erythematosus

Investigating osteoarthritis endotypes through clustering of biochemical
marker data

Describing patterns of pain sensitization among patients with knee
osteoarthritis

 Data reduction: principal component analysis, factor
analysis

» Clustering: model-based cluster analysis, K-means




Methods for Learning from Data:
Semi-supervised Methods

« Combination of Supervised and Unsupervised approaches

» Outcomes/classes are labeled for some part of the dataset

» Analysis usually done in steps with supervised followed by
unsupervised or vice versa

- Examples: often used in natural language processing
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Supervised Methods
To explain, or to predict?

TO EXPLAIN TO PREDICT

« We use a mathematical model to « We use a mathematical model to
formalize the relationship between make predictions about the
variables.

dependent variable.

- We focus on obtaining unbiased
estimates of the associations
between our independent and

- We focus on obtaining the optimal
prediction based on a combination

dependent variables. of available variables.

. Goal may be causal inference: does * Goal may be to reliability predict
our predictor have a causal effect on outcomes for individuals.
outcome?

Shmueli G. To explain or to predict?. Statistical science. 2010.

https://statisticalhorizons.com/prediction-vs-causation-in-regression-analysis



Example: To Explain
RHEUMATOLOGY
Original article

Long-term weight changes and risk of rheumatoid
arthritis among women in a prospective cohort: a
marginal structural model approach

Nathalie E. Marchand ® ', Jeffrey A. Sparks ® ', Susan Malspeis’,
Kazuki Yoshida', Lauren Prisco’, Xuehong Zhang®*®, Karen Costenbader’,
Frank Hu?34, Elizabeth W. Karlson' and Bing Lu'

Objective: To examine the association of long-term weight
change with RArisk in a large prospective cohort study.




Example: To Explain

Confounder: physical
activity \

Exposure: weight gain Outcome: RA

“An analysis of weight change and RA risk in prospective cohort studies may be
limited by time-varying confounders, which may themselves be affected by previous
weight change, that lie on the causal pathway between weight change and RA.”




Example: To Explain

Fic. 1 Directed acyclic graph showing the relationships between weight change and rheumatoid arthritis in the pres-
ence of time-varying confounding

Lifestyle factors Lifestyle factors
(e.g. physical (e.g. physical
activity, smoking, / activity, smoking,
W

diet, etc.) (t,) diet, etc.) (t,)
4 Weight eig
an

ht
change change
(to) (t;)

Rheumatoid
Arthritis

Unmeasured Unmeasured
confounders confounders

(to) (ty)

Marchand NE, et al. "Long-term Weight Changes and Risk of Rheumatoid Arthritis Among Women in a Prospective Cohort: A Marginal

Structural Model Approach." Rheumatology (2020).



Example: To Explain

. Usingan MSM approach in our analyses allowed us to deal
with the time-varying confounding. In addition, by
conducting our analyses in the ‘pseudo-population’ we were
able to statistically approximate the study conditions of @
randomized controlled trial (RCT)in which we could specify
hypothetical weight-change interventions of interest.

Rheumatology key messages

e Long-term weight gain during adult life may nearly quadruple rheumatoid arthritis risk in women.
e Rheumatoid arthritis risk increased starting with a weight gain of 2-10 kilograms from study baseline.

Marchand NE, et al. "Long-term Weight Changes and Risk of Rheumatoid Arthritis Among Women in a Prospective Cohort: A Marginal

Structural Model Approach." Rheumatology (2020).



Example: To Predict

Vodencarevic et al. Arthritis Research & Therapy (2021) 23:67
https://doi.org/10.1186/5s13075-021-02439-5 Arthritis Research & Thera py

RESEARCH ARTICLE Open Access

Check for
updates

Advanced machine learning for predicting
individual risk of flares in rheumatoid
arthritis patients tapering biologic drugs

Asmir Vodencarevic'", Koray Tascilar**', Fabian Hartmann®>, Michaela Reiser®, Axel J. Hueber***,

Judith Haschka?>, Sara Bayatz'g, Timo Meinderink?3, Johannes Knitza®>, Larissa Mendez>>, Melanie Hagen2'3,
Gerhard Kronke??, Jirgen Rech?? Bernhard Mangerz'3, Arnd Kleyerz‘B, Marcus Zimmermann-Rittereiser’,
Georg Schett*?, David Simon®* ® and on behalf of the RETRO study group

Objective: To assess the feasiblility of building a model to estimate the
iIndividual flare probability in RA patients tapering bDMARDSs.




Example: To Predict

Used data from the REduction of Therapy in patients with rheumatoid
arthritis in ongoing remission (RETRO) study. 135 visits from 41

patients
Outcome: a binary indicator of whether a patient suffered a flare

within 14 weeks after a given visit. 31 total flares.
Predictors: patient characteristics, disease characteristics, medication

data, laboratory data (n > 30)
Analytic approach: ensemble machine learning model




Example: To Predict
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Vodencarevic A, et al. “Advanced machine learning for predicting individual risk of flares in rheumatoid arthritis patients tapering biologic drugs.”

Arthritis research & therapy (2021).
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Principles of
Risk Prediction

Input data

Training and
testing data set
e Raw data

Training,
testing, and

(input and
outcome
variables
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individual)

Jamshidi A, et al. Machine-
learning-based patient-specific
prediction models for knee
osteoarthritis. Nat Rev
Rheumatol (2019).
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processing step
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Principles of Risk Prediction
Input Data: Training and Testing

. The model should generalize to populations that were
not included in the derivation sample. Overfitting is when
the model captures random variation in the data.

. If number of predictors is greater than the number of
observations, we can get perfect prediction (p > n).

. Model fits well in the dataset used to create the model,
but how will it perform on “new” data?




Principles of Risk Prediction
Input Data: Training and Testing

. Training and testing datasets: hold out part of sample when
model building

. Cross validation: Partition data into subsets, and hold out one
subset for testing. Repeat until all subsets have been hold out and
average over all subsets.

. Resampling procedures (e.g., bootstrap): resample (with
replacement) from original dataset to compute optimism adjusted
measures of predictive performance.

. External validation: test predictions in new dataset.




Principles of Risk Prediction
Input Data: Training and Testing

E Stacking Meta-Classifier

=
o0}
1

0.6 -

4 -
0 2 ROC fold 0 (AUC = 0.8487)

7 ROC fold 1 (AUC = 0.9524)
, ROC fold 2 (AUC = 0.7273)
s ROC fold 3 (AUC = 0.8182)
, ROC fold 4 (AUC = 0.7000)
S - = Luck

ol —— Mean ROC (AUC = 0.808 + 0.090) _

0.0 - - + 1 std. dev.
1 1 ] 1 1 ]

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (1 - Specificity)

True Positive Rate (Sensitivity)

o
N
'
\

Vodencarevic A, et al. “Advanced machine learning for predicting individual risk of flares in rheumatoid arthritis patients tapering biologic drugs.”

Arthritis research & therapy (2021).



Principles of Risk Prediction
Bias-Variance Tradeoff
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Supervised Learning Algorithms
Logistic Regression

. Parametric regression model
e Parametric: assume a form for the model

. log(Odds of Outcome) = 30 + 31*covariate
e Log odds of outcome (logit) is a linear function of covariates

. The odds ratio quantifies association between predictor and outcome

. C-Statistic/AUC (Area under the ROC Curve) is a measure of model

discrimination
e 0.5 = coin flip, 1 = perfect prediction




Supervised Learning Algorithms
Logistic Regression

Among patients with knee osteoarthritis, Iis age
associated with total knee replacement?
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Supervised Learning Algorithms

Logistic Regression

Among patients with knee osteoarthritis, Iis age
associated with total knee replacement?

. log(Odds of Outcome) = 30 +
31*covariate

. log(Odds of TKR) = 30 + B1*age
. log(Odds of TKR) =-2.7 + 0.015*age
. OR=1.015

Log Odds of TKR
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Supervised Learning Algorithms
Logistic Regression

Among patients with knee osteoarthritis, Iis age
associated with total knee replacement?

. log(Odds of Outcome) = 30 +
31*covariate + B2*covariate

. log(Odds of TKR) = 30 + 1*age +
32*age?

. log(Odds of TKR) =-10.5 + 0.26*age
— 0.002*age? 35

-1.5

-2.0

-2.9

-3.0

Log Odds of TKR




Supervised Learning Algorithms
Logistic Regression

Among patients with knee osteoarthritis, Iis age
associated with total knee replacement?

. log(Odds of Outcome) = B0 + Q) o)
31*covariate + B2*covariate + . .0 a2
33*covariate + ... < 20 o

g 25 QO
3 30 O
-3.5 O




Principles of Risk Prediction
Blas-Variance Tradeoftf
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Supervised Learning Algorithms
Parametric Models

« Parametric: assume a form for the model

* Aregression equation describes the association between each
parameter and the outcome
* Y = Intercept + beta*covariate

* Log(odds of Y) = intercept + beta*covariate




Supervised Learning Alg ., °
Parametric Models ,

*Additional terms can be added to
capture non-linear associations 35 o

(splines, polynomials) or 5 0 20 80
Interactions between variables

- Stratify by sex; Model association
separately for age < 65 vs. age 65+ 15

Log Odds of TKR

-2.0

« With a large number of predictors it
would be impossible to try all
possible combinations, including
Interactions and non-linear
associations
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Supervised Learning Algorithms

CART

. Classification and Regression Trees
(CART): Recursive partitioning: the data
are partitioned into subsets — there is no
regression eguation (non-parametric)

Explicitly models interactions between
variables (effect of variable b depends on
level of variable a)

Results are intuitive and clinically
Interpretable — clear rules

. Example: Price et al. attempted to predict
development of accelerated knee
osteoarthritis from imaging data

Effusion 2
Volume > 14 Effusno(r:);l%grre <14
(n=24)
A4
BML Volume < 0.24 BN VoRaTe
(n=35) >0.24
(n=100)
A A
Cruciate No Cruciate Ligament
Ligamant Degeneration
Degeneration 9
(n=7) (n=28)
Effusion Effusion
Volume <5 Volume > 5
(n=11) (n=17)
A
AKOA AKOA AKOA No AKOA No AKOA
16 AKOA 6 AKOA 7 AKOA 3 AKOA 19 AKOA
8 No AKOA 1 No AKOA 4 No AKOA 14 No AKOA 81 No AKOA

Price LL et al. "Role of Magnetic Resonance Imaging in Classifying Individuals Who Will Develop Accelerated Radiographic Knee Osteoarthritis." 2019.




Supervised Learning Algorithms

CART

Concerns/criticisms:

e Greedy approach can lead to
over-fitting

e Highly dependent on input data
-—> small changes to input data
can lead to different trees

e Tvariance — tends to overfit

Effusion 2
Volume > 14 Effusno(l:‘ ;l::il;gr)ne <14
(n=24)
A4
BML Volume < 0.24 B Volume
(n=35) 2024
(n=100)
y
Cruciate No Cruciate Ligament
Ligamennt Degeneration
Degeneration g -8
(n=7) (n=28)
Effusion Effusion
Volume <5 Volume > 5
(n=11) (n=17)
y
AKOA AKOA AKOA No AKOA No AKOA
16 AKOA 6 AKOA 7 AKOA 3 AKOA 19 AKOA
8 No AKOA 1 No AKOA 4 No AKOA 14 No AKOA 81 No AKOA

Price LL et al. "Role of Magnetic Resonance Imaging in Classifying Individuals Who Will Develop Accelerated Radiographic Knee Osteoarthritis." 2019.




Supervised Learning Algorithms
Ensemble Methods

« Combine information from multiple models Dataset
Improve model performance
« Develop many prediction models o ooy N o
« Combine to form a composite predictor

. Bagging (Bootstrap Aggregation):
. Draw a bootstrap sample from the data

(.e., with replacement)
Fit a model to this sample
Get a prediction

» Results Aggregation [«

Repeat
Average predicted values across all (( it preciction )
bootstrapped samples.

https://towardsdatascience.com/ensemble-methods-in-machine-learning-what-are-they-and-why-use-them-68ec3f9fef5f




Supervised Learning Algorithms
Random Forest

. Tree-based approach (like CART)

« Draw a random sample of subjects [sample and feature bagging
and a random sample of predictors / / \
and then create decision tree Tree 1

« Average across trees

« Pros: improved prediction, more
stable than CART

« Cons: interpretability — No clear
measure to assess the association
between predictors and outcome
(e.g., OR), no final tree

https://tex.stackexchange.com/questions/503883/illustrating-the-random-forest-algorithm-in-tikz




Supervised Learning Algorithms
Super Learner

Super Learner Architecture

decision tree random forest naive bayes boosted trees
Inputs

/

Predictions

positive negative

https://blog.jaysinha.me/train-your-first-super-learner-ensemble-model-for-classification/



Supervised Learning Algorithms
From ML to Al

MACHINE LEARNING -

; \ é i *—0_—49 T
- © = © oo © e
INPUT FEATURE en;géruc;N CLASSIFICATION OUTPUT
Wheels Doors Motor Steering Headlights Outcome:

wheel car
4 4 Yes Yes Yes Yes
2 0 Yes No Yes No
4 2 No No NO NO

https://dltlabs.medium.com/understanding-machine-learning-deep-learning-f5aa95264d61



Supervised Learning Algorithms
From ML to Al

MACHINE LEARNING -

-
2y

INPUT FEATURE EXTRACTION CLASSIFICATION OUTPUT

DEEP LEARNING

FEATURE EXTRACTION + CLASSIFICATION

https://dltlabs.medium.com/understanding-machine-learning-deep-learning-f5aa95264d61



Supervised Learning Algorithms
From ML to Al

Jacgues




Learning Algorithms: Deep Learning
Simple Neural Net

iInput layer (features or predictors)

output layer (outcome)

use a simple linear map from input to output
» .. x> - Inputs

» z-output X1

ZzZ = S(lel + X2b2)

fby by (X1, X2) = S(x1b1 + x2b2)

Simon & Shojaie. Supervised Learning: Neural Networks and Deep Learning. Summer Institute in Statistics for Big Data.

University of Washington. 2021



Learning Algorithms: Deep Learning
Neural Net with 1 Hidden Layer

Z,=S,(x,b1q + X,b0,,)

X1
b 1
M ws*g{zlcl + zzcz)
b,
X2

Simon & Shojaie. Supervised Learning: Neural Networks and Deep Learning. Summer Institute in Statistics for Big Data.

University of Washington. 2021



Learning Algorithms: Deep Learning
Neural Net with Many Hidden Layers

https://www.ibm.com/cloud/learn/neural-networks



Machine Learning and Ml

Reviewer Resources
O commams

Assessing Radiology Research on Artificial Intelligence:
A Brief Guide for Authors, Reviewers, and Readers—From the
Radiology Editorial Board

David A. Bluembke, MD, PhD * Linca Moy, MD * Miriam A. Bredella, MD + Birgit B. Frtl-Wagner, MD, MHBA
Kathryn J. Fowler, MD * Vicky J. Goh, MBBCh * Elkan E Halpern, PhD » Christopher P Hess, MD
Mark L. Schiebler, MD » Clifford R. Weiss, MD

Radiology 2020; 294:487—480 ® hutps://doiorg/10.1 148/radiol 2019192515 * @ RSMNA, 2019

Key Considerations for Authors, Reviewers, and
Readers of Al/ ML Manuscripts in Radiclogy

Key Cons iderations

Are all three image sets (training, validation, and test scts)

dehned?

Is an external test set used for final statistical reporting?

Have multivendor images been used to evaluate the Al
algorithm?

Are the sizes of the training, validation, and test scts
justified?

Was the Al algorithm trained using a standard of refer-
ence that is widely accepted in our ficld?

Was preparation of images for the Al algorithm adequarely
described?

Were the results of the Al algorithm compared with
radiology cxperts and/or pathology?

Was the manner in which the Al algﬂrithm makes
decisions demonstrated?

Is the Al alporithm publicly available?

Mote.—Al = armhcal int::"if:{::ncf:, ML = machine |:::1ming.




Machine Learning and Ml
Reviewer Resources

Radiology:Artificial Inteligence e

Checklist for Artificial Intelligence in Medical Imaging

(CLAIM): A Guide for Authors and Reviewers

Jobm Mongan, MD, PhD * Linda Moy, MD « Charles E. Kabn, Jr, MD, MS

Radiology: Artificial Intelligence 2020; 2(2):e200029 * https://doi.org/10.1148/ryai. 2020200029 * Content codes:[IN][Al] * ©RSNA, 2020

Ground Truth

Data Parttons

Model

Training

14
15
16
17
18

19
20
21
22
23
24
25
26
27

Dichnition of ground truth reference standard, in sufficient detail to allow replication

Rationale for choosing the reference standard (if alternatives exist)

Source of ground truth annotations; qualifications and preparation of annotators

Annotation tools

Mcasurement of inter- and intrarater vaniability; methods to mitigate vanability and/or resolve
disc repancics

Intended sample size and how it was determined

How data were assigncd to partitions; spc-ciﬁ; proportions

Level at which partitions are disjoint (eg, image, study, patient, institution)

Detailed deseription of model, including inputs, outputs, all intermediate layers and connections

Software libraries, frameworks, and packages

Initialization of model parameters (cg. randomization, transfer ||::zlrnin;:r']I

Details of training approach, including data augmentation, hyperparameters, number of models trained

Method of selecting the final model

Enscmbling techniques, if applicable




Machine Learning and Ml
Reviewer Resources

BM) Open Protocol for development of a reporting
guideline (TRIPOD-AI) and risk of bias
tool (PROBAST-AI) for diagnostic and
prognostic prediction model studies
based on artificial intelligence

Gary S Collins @ ,'* Paula Dhiman @ ,'? Constanza L Andaur Navarro © °

Jie Ma @ ! Lotty Hooft,>* Johannes B Reitsma,’ Patricia Logullo © ,?
Andrew L Beam © ,>° Lily Peng,” Ben Van Calster © %210
Maarten van Smeden @ ,° Richard D Riley @ ,'" Karel GM Moons®*




Key References
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